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Abstract Tendinopathy is a common clinical problem

with athletes and in many occupational settings. Tendin-

opathy can occur in any tendon, often near its insertion or

enthesis where there is an area of stress concentration, and

is directly related to the volume of repetitive load to which

the tendon is exposed. Recent studies indicate tendinopathy

is more likely to occur in situations that increase the

‘‘dose’’ of load to the tendon enthesis – including increased

activity, weight, advancing age, and genetic factors. The

cells in tendinopathic tendon are rounder, more numerous,

and show evidence of oxidative damage and more apop-

tosis. These cells also produce a matrix that is thicker and

weaker with more water, more immature and cartilage-like

matrix proteins, and less organization. There is now evi-

dence of a population of regenerating stem cells within

tendon. These studies suggest prevention of tendinopathy

should be directed at reducing the volume of repetitive

loads to below that which induces oxidative-induced

apoptosis and cartilage-like genes. The management strat-

egies might involve agents or cells that induce tendon stem

cell proliferation, repair and restoration of matrix integrity.

Introduction

Tendons are specialized tissues that connect muscle to

bone and transmit the forces generated by muscle to bone,

resulting in joint movement. Tendon injuries are common

and affect a substantial portion of recreational and pro-

fessional athletes and those in many occupations involving

repetitive work [16, 37, 60, 79, 102]. Tendinopathy (often

called tendinitis or tendinosis) is the most common tendon

disorder [86, 99]. It is characterized by activity-related

pain, focal tendon tenderness, and decreased strength and

movement in the affected area. The histological features of

tendinopathy are further described in the current study.

Tendinopathy can occur in almost any tendon. Common

examples include plantar fasciitis, Achilles tendinitis,

patellar tendinitis, tennis elbow, golfer’s elbow, and

supraspinatus tendinitis. Tendinopathy is poorly under-

stood and has many described remedies with very little

evidence to support their efficacy. One of the reasons there

are very few, if any, good treatments for tendinopathy is

lack of knowledge regarding its pathogenesis.

We summarize recent cellular and molecular findings in

tendinopathy to identify potential preventative and treat-

ment strategies and specific areas needing further

investigation.

Search Strategies and Criteria

We performed a systematic review of peer-reviewed, ori-

ginal English language papers published on the etiology,

histopathology and molecular biology/pathology of ten-

dinopathy using Ovid MEDLINE and PubMed database

from 1950 to November 2007. Keywords used in the

search were: tendinopathy; pathogenesis; tendon cells;
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extracellular matrix; proteoglycan; metalloproteinases.

Subheadings used in the search were: etiology; pathology;

chemistry; metabolism. This analysis revealed 441 papers

(432 papers from 1997–2007), of which 86 met our

selection criteria. From this analysis we came to the fol-

lowing conclusions:

Common Intrinsic and Extrinsic Associations

Tendinopathy has an increased incidence with age and the

male gender [11, 89] and with obesity [36, 47]. Excessive

long-distance running, intensity, and hill work are risk

factors for acute Achilles tendinopathy [60, 70, 95]; dis-

tance and excessive time spent swimming are associated

with supraspinatus tendinopathy [98]. There is also an

association between tendinopathy and hormone replace-

ment therapy and oral contraceptives in women [47].

Genetic Factors

The siblings of patients with full-thickness rotator cuff

tears have twice the risk of developing full-thickness tears,

and nearly five times the risk of experiencing symptomatic

full-thickness tears [44]. Earlier studies have reported an

association between blood type O and the incidence of

tendon injuries [51, 52, 59]. Recent genomic studies sug-

gest people who have variants of the tenascin-C gene with

12 and 14 guanine-thymine repeats, or people who have

COL5A1 BstUI restriction fragment length polymorphisms

(RFLPs) are more likely to develop chronic Achilles

tendinopathy than those who do not have those polymor-

phisms [73, 74]. These findings suggest there is a genetic

predisposition to the development of tendinopathy. How-

ever, no specific causative gene has been linked to

tendinopathy, suggesting that tendinopathy may be poly-

genic and may involve complex interaction between

multiple genes.

Histopathological Changes

The histopathologic changes in tendinopathy are well-

established (Table 1) (Fig. 1) [101]. Normal tendon is

brilliant white in color and has a firm fibroelastic texture.

In contrast, tendinopathic tendon is grey or brown, and is

soft, thin, and fragile [57]. Microscopically, the collagen

bundles are disorganized, there is increased ground sub-

stance, and the nuclei are darkly stained and round and

found in increased numbers. This contrasts to the well

organized parallel collagen bundles found in normal ten-

don with spindle-shaped tenocyte nuclei arranged in T
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parallel alignment [46, 54, 68, 89]. At the electron-micro-

scopic level the collagen fibers in tendinopathic tendon are

angulated, vary in diameter and orientation, and have

bubbles. There are changes consistent with hypoxia,

including lipid vacuoles, enlarged lysosomes, and

degranulated endoplasmic retinaculum [54]. Rarely have

inflammatory cells been identified in tendinopathic tendon

[12, 46, 54, 89]. Tendinopathic tendon often has infiltra-

tions of vascular and small blood vessels [4, 46, 68, 85], an

upregulation of vascular endothelial growth factor (VEGF)

[80, 84], and ingrowths of small nerves [4, 64, 93]. These

pathologic changes are consistent with ‘‘degeneration’’ and

attempts of ‘‘regeneration’’.

Immunohistochemical studies demonstrate the number

of substance P (SP)-positive nerve fibers are higher in

painful tendinopathic samples compared to normal tendon

samples [64, 93]. Microdialysis demonstrate higher neuro-

transmitter glutamate levels in chronic painful Achilles and

patellar tendinosis compared with pain-free normal control

tendons [2]. Microarray studies also report an increased

mRNA of glutamate in healing rat Achilles tendon [76] and

tendinopathic supraspinatus in rats [75]. The presence of

neovascularization and innervation, and the increase of

neurotransmitter in tendinopathy may be part of the reason

tendinopathy patients often have chronic pain [1, 3, 82].

Danielson et al. [32, 33] recently reported the tenocytes in

tendinosis patellar tendon exhibited more immunoreactions

for adrenergic receptors and catecholamine. These findings

are of relevance as studies have demonstrated stimulation of

adrenergic receptors can lead to cell proliferation and/or

cell degeneration and apoptosis [6, 23].

Apoptosis

We found an increased amount of apoptosis or pro-

grammed cell death in degenerative tendon: there are twice

as many apoptotic cells in ruptured supraspinatus tendon as

in normal subscapularis tendon [117]. Lian et al. [65]

reported an increased apoptosis in patellar tendinopathy in

athletes and also showed apoptosis could be induced by

high-strain mechanical loading in a rat tibialis anterior

tendon model [97]. Activation of c-Jun N-terminal kinase

(JNK) [111] and increase of cytochrome c-related activa-

tion of caspase-3 [118] might be two potential pathways for

the induction of apoptosis in tendinopathy. These two

pathways are associated with oxidative stress. Oxidative

stress can be induced during high dose cyclic strain in

human and animal tendon cells in vitro and in ex vivo [10,

97, 100]. Arnoczky et al. [10] reported cyclical strain in

cultured canine flexor tendon cells induces stress activated

protein kinase, which in turn can induce apoptosis [100]. In

a running rat supraspinatus tendon model, we also have

found overuse induces upregulation of stress-related genes

such as flice inhibitory protein (FLIP), heat shock protein

27 (HSP27) and testis heat shock-related protein 70

(HST70) [75].

Tendon Cells

Fibroblast-like cells are the major cell type in tendons, and

have been histologically classified as elongated tenocytes

or ovoid tenoblasts [25, 53]. These cells are important for

maintenance of healthy tendon as they can proliferate,

produce collagen and maintain the appropriate extracellular

matrix [19, 53]. Ovoid tenoblasts – often described as an

immature or activated form of tenocytes – have a higher

proliferation index and apoptosis index than those of

elongated tenocytes [25]. There is evidence that changes

occur in the cells (tenocytes appear rounder, proliferate,

become necrotic or apoptotic, and have an increased

expression of local insulin-like growth factor-1 (IGF-1))

before the overt development of tendinopathy [8, 28, 96].

Fig. 1A–B The normal tendon and tendinopathy tendon is shown.

(A) Normal tendon has parallel, longitudinal architecture with

scattered elongated tenocytes. (B) Tendinopathy tendon shows

disorganized collagen architecture, high cellularity of rounded

tenocytes. (This figure was published in Soslowsky LJ, Thomopoulos

S, Tun S, Flanagan CL, Keefer CC, Mastaw J, Carpenter JE. Neer

Award 1999. Overuse activity injures the supraspinatus tendon in an

animal model: a histologic and biomechanical study. J Shoulder
Elbow Surg. 2000;9:79–84, � Elsevier 2000, with permission.)
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Other cell types, such as synovial-like cells, smooth muscle

cell and endothelial cells, can be found in the endotenon

and epitenon of tendon.

Transformation of tendon cells towards a fibrochon-

drogenic phenotype has been observed in torn rotator cuff

tendons [46], and Archambault et al. [7] reported tendi-

nopathic rat supraspinatus tendon had increased expression

of cartilage genes such as col2a1, aggrecan, and sox9.

Tenocytes from the site of tendinopathy also produce

abnormal amounts of collagen III, commonly associated

with wound healing, even when the repetitive motion is no

longer present [69].

Using a combination of cell markers and flow cytom-

etry analysis, Bi and colleagues [18] identified a unique

cell population termed tendon stem/progenitor cells

(TSPCs) in human and mouse tendons with several uni-

versal stem cell characteristics including clonogenicity

(the ability to form clones), multipotency (multidifferen-

tiation potential towards osteogenesis, adipogenesis, and

chondrogenesis) and self-renewal capacity (higher dou-

bling capacity than bone marrow stromal cells [BMSCs]

from same sources). Moreover, the isolated human or

mouse TSPCs could regenerate tendon-like tissues with

either HA/TCP or Matrigel in vitro, whereas mouse der-

mal fibroblasts transplanted with Matrigel did not form

any tissue. When transplanted with HA/TCP onto the

surface of mouse calvaria, human TSPCs formed con-

densed collagen fibers inserted into the bone which were

similar to Sharpey’s fibers [18]. Terminal differentiation

of single cells selected from a group of equivalent pre-

cursors may be random, or may be regulated by external

environment/signals. Some specific microenvironments/

additional signals are essential for tenocyte differentiation

and proliferation [94, 114]. A recent report suggests an

extracellular matrix (ECM)-rich niche, organized in part

by biglycan (Bgn) and fibromodulin (Fmod), controls the

self-renewal and differentiation of TSPCs [18]. Depletion

of Bgn and Fmod in mice leads to decreased expression of

the tendon marker scleraxis (Scx) and of Type I collagen,

and increased sensitivity to BMP2 in TSPCs when com-

pared to cells from wild-type mice [18]. BMP12 acts as

signaling molecules during embryonic tendon/ligament

formation in animal experiments [67, 112, 114] and can

stimulate patellar tendon fibroblasts proliferation in

humans [40]. Expression of Scx, a member of the basic

helix-loop-helix (bHLH) superfamily of transcription fac-

tors in the progenitors and cells of all tendon tissues [94],

is crucial for differentiation of all force-transmitting and

intermuscular tendons in Scx-/- mice [78] and for acti-

vation of the COL1a1 gene in mouse tendon fibroblasts in

an in vitro study [63]. These studies indicate the genes

that coordinate with the matrix regeneration are also

important for regenerating TSPC’s.

Extracellular Matrix (ECM)

The extracellular matrix (ECM) is a complex structural

entity surrounding and supporting cells. The ECM is

composed of three major classes of biomolecules: struc-

tural proteins (collagen and elastin), specialized proteins

(eg. fibrillin and fibronectin), and proteoglycans [21]. The

interaction between tendon cells and EMC is bidirectional:

alteration of EMC may be initiated by tendon cells [8, 28],

and changes of EMC microenvironment may also lead to

cell proliferation, migration, apoptosis, and morphogenesis

[108]. The maintenance of the tendon matrix has important

consequences for the ability of the tendon to resist

mechanical forces and to repair response to injury [58].

Some authors suggest an imbalance in the synthesis and

degradation of ECM leads to structural deterioration and

degeneration of the tendon [9, 20, 48].

Collagen is the predominant constituent of tendon.

There are 27 different collagen molecules identified to date

[87]. Although Type I collagen accounts for approximately

65% to 80% of the dry mass of the tendon and represents

almost 95% of the total collagen in a normal tendon [53],

other collagens including collagen types II, III, IV, V, VI,

IX, X, XII, and XIV have also been found in small quan-

tities within tendon [86, 107, 110]. Changes in the collagen

content and composition have consistently been found in

tendinopathy (Table 2). These changes include: (1) a

reduction in the total collagen content, an increase of

proportion of types I, III, and V collagen, and an increase

of ratio of Type III to Type I collagen; (2) a higher per-

centage of denatured collagen; and (3) a lower ratio of

pentosidine and higher ratios of hydroxylated lysine resi-

dues in collagen crosslinks.

Proteoglycans are protein/polysaccharide complexes in

the ECM that trap water and affect the viscoelastic prop-

erties of the tissue, helping the tissue resist compressive

forces [115]. Proteoglycans consist of a protein core with

attached glycosaminoglycans (GAGs). Tendon contains a

wide variety of proteoglycans, including the large aggre-

gating proteoglycans and a variety of small leucine-rich

proteoglycans (SLRPs) [116]. Proteoglycans and their

constituent GAGs can influence many important physio-

logical processes in tendon, including ion transport, water

retention, the diffusion of nutrients, mediating cell-matrix

interactions, resistance of compression and sequestration of

growth factors and enzymes in the matrix [43, 116]. Ani-

mal studies demonstrate biglycan may serve both a

structural [109] and a signaling role [77] in developing

tendon and biglycan and collagen VI are coexpressed in

tendon development [61]. It is possible the presence of

tendon fibrocartilage proteoglycan/glycosaminoglycan in

normal supraspinatus is part of a normal functional adap-

tation to mechanical forces in tendon [91].
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Table 2. Changes of extracellular matrix in tendinopathy

ECM Tendinopathy Species Tendon Reference

Degenerate tendon Ruptured tendon

Collagen

Total Decrease (protein) Human Supraspinatus,

subscapularis

Bank et al. [15],

Riley et al. [92]

Type I Increase (mRNA) Human Achilles de Mos et al. [34],

Ireland et al. [48]

Decrease (protein) Human Posterior tibial Goncalves-Neto et al. [42]

Type III Increase (mRNA) Human Achilles de Mos et al. [34],

Ireland et al. [48]

Increase (protein) Human Supraspinatus,

subscapularis,

posterior tibial

Goncalves-Neto et al. [42],

Riley et al. [92]

Increase (protein) Equine Superficial digital

flexor

Birch et al. [20]

Increase (protein) Human Achilles Eriksen et al. [35]

Type III/Type I Increase (mRNA) Human Achilles Ireland et al. [48]

Increase (protein) Equine Superficial digital

flexor

Birch et al. [20]

Type V Increase (protein) Human Posterior tibial Goncalves-Neto et al. [42]

Denatured collagen* Increase (protein) Increase (protein) Human Achilles,

Supraspinatus

de Mos et al. [34],

Riley et al. [88]

Crosslinks/CTH

Pentosidine Decrease (protein) Human Achilles de Mos et al. [34]

Hydroxylysine Increase (protein) Human Achilles de Mos et al. [34]

Increase (protein) Human Supraspinatus Bank et al. [15]

HP No change (mRNA) Human Achilles de Mos et al. [34]

Increase (protein) Human Supraspinatus Bank et al. [15]

LP No change Human Achilles de Mos et al. [34]

Increase (protein) Human Supraspinatus Bank et al. [15]

Proteoglycans

Versican Decrease (mRNA) Decrease (mRNA) Human Achilles Corps et al. [30]

No change (mRNA) No change (mRNA) Human Achilles Corps et al. [29]

V0 No change (mRNA) No change (mRNA) Human Achilles Corps et al. [30]

V1 Decrease (mRNA) Decrease (mRNA) Human Achilles Corps et al. [30]

V2 Decrease (mRNA) Decrease (mRNA) Human Achilles Corps et al. [30]

V3 Decrease (mRNA) Decrease (mRNA) Human Achilles Corps et al. [30]

Aggrecan Increase (mRNA) No change (mRNA) Human Achilles Corps et al. [29]

Increase (mRNA) Rat Supraspinatus Archambault et al. [7]

Biglycan Increase (mRNA) No change (mRNA) Human Achilles Corps et al. [29]

Decorin No change (mRNA) Decrease (mRNA) Human Achilles Corps et al. [29]

GAG (staining) Increase (protein) Human Achilles Maffulli et al. [68]

Sulphated GAG Increase (protein) Human Patellar Fu et al. [39]

Noncollagen glycoproteins

Fibronectin Increase (protein) Human Supraspinatus;

Achilles

Lehto et al. [62],

Tillander et al. [105]

Tenascin (300-kd isoform) Increase (protein) Increase (protein) Human Supraspinatus Riley et al. [90]

* Using selective proteolysis of denatured collagen by alpha-chymotrypsin as described by Bank et al. [14].

CTH = collagen triple helix; HP = hydroxylysylpyridinoline; LP = lysylpyridinoline; GAG = glycosaminoglycan; V0-3 = Versican splice

variants 0–3.
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Studies from gene-knockout mice demonstrate targeted

deletion of decorin, fibromodulin, or lumican or deletion of

both lumican and fibromodulin cause abnormal collagen

fibril and fibril bundle morphology [24, 31, 72], indicating

these proteoglycans play an important role in regulation of

collagen fibril formation and maturation. Although

increases of aggrecan and biglycan in tendons have been

implicated in early tendon healing process [104], the

changes of other type of proteoglycans in tendinopathy are

different to those in normal and healing tendons (Table 2).

Very little is known about the changes in noncollagen

glycoproteins in tendinopathy. Fibronectin and tenascin-C

are key factors in the tendon repairing process by pro-

moting fibroblast migration, and adhesion of fibroblasts to

fibrin [41, 106]. In addition to the genomic study [73]

showing variants of the tenascin-C gene are associated with

Achilles tendon injury, a persistent increase in expression

of fibronectin and tenascin-C has been reported in tendin-

opathy (Table 2) and may contribute to the pathogenic

matrix remodeling in tendinopathy [90, 105].

Metalloproteinases and their Inhibitors

Metalloproteases (MMPs) are a large family of enzymes

that degrade all tendon matrix components, and these

enzymes and their inhibitors play a major role in the deg-

radation of matrix during development, adaptation, and

repair [87, 108]. In addition to their important role in

normal physiological events in tendon homeostasis and

repair [108], these enzymes may be key effectors of the

pathological processes in tendon disease [26].

Arnoczky et al. demonstrated MMP inhibitors can pre-

vent the activation of MMP-13 and inhibit pericellular

matrix degeneration and the loss of material properties

associated with stress deprivation in an in vitro study [9].

They reported increases in the activity and mRNA

expression of MMPs-1, -9, -11, and -13 in tendinopathy

(Table 3). Elevation of MMP-3 is associated with tendon

remodeling and repair in normal and injured tendons [19,

48, 88]. Decreases of MMP-3 activity and mRNA expres-

sion were found in supraspinatus and Achilles tendinopathy

(Table 3).

A disintegrin and metalloproteinase (ADAM) is a

transmembrane protein that contains a disintegrin and

metalloprotease domain and, therefore, it potentially has

both cell adhesion and protease activities [83]. A novel

family of extracellular proteases, a disintegrin-like and

metalloprotease with thrombospondin motifs (ADAMTS),

apparently plays an important role in proteoglycan turnover

in tendon [50, 103]. Nineteen ADAMTSs have been

identified so far, but many of them remain to be fully

characterized [50]. ADAMTS-2, -3, and -14 function as

key regulators of collagen fibril assembly [27]. ADAMTS-

1 and -4 are capable of cleaving certain matrix proteo-

glycans such as versican, brevican, and aggrecan [81, 113].

ADAMTS-4 also cleaves nonproteoglycan ECM compo-

nents such as fibromodulin and decorin [55]. However,

there is very little knowledge about the roles of ADAMs

and ADAMTS played in tendinopathy (Table 3).

The activities of MMPs are normally tightly controlled

in vivo, with regulation at the levels of transcription,

translation, activation, and inhibition [87]. The activities of

MMPs are inhibited by a family of tissue inhibitors, the

tissue inhibitors of metalloproteinases (TIMPs). This fam-

ily contains four human gene products, namely TIMP1,

TIMP2, TIMP3, and TIMP4 [71]. All TIMP members

inhibit MMP members to varying degrees [13], however,

only TIMP-3 is a potent inhibitor of members of ADAM

and ADAMTS [5, 45, 56]. The activity of MMPs is

inhibited reversibly by TIMPs in a noncovalent fashion in a

1:1 stoichiometry [22]. Decreases in TIMP-2, -3, and -4 are

consistently found in tendinopathy (Table 3). MMP

inhibitors prevent the activation of MMP-13 and inhibit

pericellular matrix degeneration and the loss of material

properties in stress-deprived tendons in vitro [9].

The data suggest the balance between metalloprotein-

ases and their inhibitors is likely essential in the

maintenance of tendon ECM homeostasis, and an imbal-

ance may result in uncontrolled tendon damage.

Discussion

The aim of this review was to identify recent advances in

the understanding of tendinopathy, particularly from a cell

and molecular biology perspective. There has been much

new information and there are many gaps in our under-

standing of the pathogenesis of tendinopathy. These gaps

are most glaring from a timeline perspective, or the

sequence of events. The research uses small windows to

look into a complex event that changes in location and

time.

Our current hypothesis is that tendinopathy is induced

when tendon cells experience a large volume of repetitive

load (Fig. 2). Tendons of certain anatomical locations are

more susceptible as are individuals who are older, heavier

and male in those genetically predisposed to tendinopathy.

There is debate as to whether a loss of integrity of the

matrix, or the cells in the tendon matrix, initiate the

changes in tendinopathy. Given the high incidence about

(70%) of tendinopathy in the shoulders of ‘‘elite’’ asymp-

tomatic swimmers [98] we favor the later. High doses of

cyclical strain induce genes for two major pathways

(Fig. 2): (1) oxidative stress – apoptosis; and (2) cartilage-

like genes.
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The interaction between these two pathways is undeter-

mined. Once tendinopathy is initiated the tendon cells

become rounded and apoptotic and produce a matrix that

contains less Type I collagen and is more cartilaginous and

‘‘immature’’ in nature. Once the normal cell – matrix

complex is disrupted, ‘‘relative’’ stress deprivation is

induced [8, 9] and metalloproteinase matrix destruction is

initiated. The enthesis becomes more painful, more vascular

and mechanically inferior to normal tendon. The histologic

data suggest attempts at repair with vascular and neuronal

infiltration occur and that if the matrix is not adequately

repaired the adrenergic responses associated with this pro-

cess may lead to persistent pain and/or complex regional

pain syndrome. The new information on tendon stem cells is

important as it implies these cells, if induced and directed to

the correct location, can reverse the degenerative process.

Table 3. Changes of matrix metalloproteases and their inhibitors in tendinopathy

Name Tendinopathy Species Tendon Reference

Degenerate tendon Ruptured tendon

MMP-1 Increase (activity) Increase (activity

& mRNA)

Human Supraspinatus,

Achilles, P\patellar

Fu et al. [38], Jones et al. [49],

Riley et al. [88]

MMP-2 Increase (activity

& mRNA)

Reduce (activity) Human Supraspinatus,

Achilles

de Mos et al. [34], Riley et al. [88]

MMP-3 Decrease (mRNA) Decrease (activity

& mRNA)

Human Supraspinatus,

rotator cuff, Achilles

Jones et al. [49], Lo et al. [66],

Riley et al. [88]

Increase (activity) Decrease (mRNA) Human Achilles de Mos et al. [34]

MMP-7 Decrease (mRNA) Human Achilles Jones et al. [49]

MMP-9 Increase (activity

& mRNA)

Increase (mRNA) Human Achilles de Mos et al. [34], Jones et al. [49]

MMP-10 Decrease (mRNA) Human Achilles Jones et al. [49]

MMP-11 Increase (mRNA) Increase (mRNA) Human Achilles Jones et al. [49]

MMP-12 Decrease (mRNA) Human Achilles Jones et al. [49]

MMP-13 Increase (activity

& mRNA)

Increase (activity

& mRNA)

Human Achilles, rotator cuff de Mos et al. [34], Lo et al. [66]

MMP-14 Increase (mRNA) Human Achilles Jones et al. [49]

MMP-16 Increase (mRNA) Human Achilles Jones et al. [49]

MMP-17 Increase (mRNA) Human Achilles Jones et al. [49]

MMP-19 Increase (mRNA) Human Achilles Jones et al. [49]

MMP-23 Increase (mRNA) Human Achilles Jones et al. [49]

MMP-24 Decrease (mRNA) Human Achilles Jones et al. [49]

MMP-25 Increase (mRNA) Human Achilles Jones et al. [49]

MMP-27 Decrease (mRNA) Human Achilles Jones et al. [49]

MMP-28 Decrease (mRNA) Human Achilles Jones et al. [49]

ADAM-8 Increase (mRNA) Human Achilles Jones et al. [49]

ADAM-12 Increase (mRNA) Increase (mRNA) Human Achilles Jones et al. [49]

ADAMTS-2 Increase (mRNA) Human Achilles Jones et al. [49]

ADAMTS-3 Increase (mRNA) Human Achilles Jones et al. [49]

ADAMTS-4 Increase (mRNA) Human Achilles Jones et al. [49]

ADAMTS-5 Decrease (mRNA) Human Achilles Jones et al. [49]

ADAMTS-7 Decrease (mRNA) Human Achilles Jones et al. [49]

ADAMTS-13 Decrease (mRNA) Human Achilles Jones et al. [49]

TIMP-1 Decrease (protein) Increase (mRNA) Human Achilles, patellar Fu et al. [38], Jones et al. [49]

TIMP-2 Decrease (mRNA) Human Rotator cuff, Achilles Jones et al. [49], Lo et al. [66]

TIMP-3 Decrease (mRNA) Decrease (mRNA) Human Rotator cuff, Achilles Jones et al. [49], Lo et al. [66]

TIMP-4 Decrease (mRNA) Human Rotator cuff, Achilles Jones et al. [49], Lo et al. [66]

MMP = matrix metalloproteinase; ADAM = a disintegrin and metalloproteinase; ADAMTS = a disintegrin and metalloprotease with

thrombospondin-like repeat; TIMP = tissue inhibitors of metalloproteinase.
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